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Evaluation of the translational free energy in a melting temperature calculation by simulation
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We present two methods suitable for controlling the translational degrees of freedom of a system when
evaluating directly the free energy difference between the liquid and the solid phases by thermodynamic
integration along a reversible path connecting these two phases. Such a constraint is crucial for an accurate
prediction of the melting point by means of simulation. In one of the methods, the free energy difference was

calculated by fixing one of the particles of the system at the center of the simulation box. In the second method,
the free energy difference was calculated by constraining the center of mass of the system to a small region
taken around the center of the simulation box. The correction to the free energy difference due to each
constraint must be evaluated by a direct simulation. Both methods give consistent results when applied to a
truncated and shifted Lennard-Jones system with cutoff radius of 2.50. However, the fixed particle constraint

method is found to be more efficient computationally.
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I. INTRODUCTION

A crucial step in determining the melting temperature of a
model system by simulation is to obtain the absolute free
energy of the solid phase by thermodynamic integration
along a pathway that connects the solid phase at a state of
interest to a reference state of known free energy [1]. The
pathway is usually characterized by a single parameter A\
controlling the potential energy ¢ of the system along the
path by a formula such as

dN) =AU+ (1 =MU,y, (1)

where U is the potential energy due to interaction among the
particles and U,,, is some properly chosen external potential
field. As \ varies from O to 1, the state of the system changes
from the reference state to the desired solid state and the
Helmholtz free energy change along the path is given by

1
AF= f d>\<'9—¢> . (2)
0 N[ ryN

For this approach to be successful, there should be no first-
order phase transition along the path. In addition, the inte-
grand in Eq. (2) must be well behaved, i.e., (i) the integrand
should not vary sharply with \ and (ii) the statistical error in
evaluating the integrand by simulation should be as small as
possible. To fulfill these requirements, one must often restrict
the translational degrees of freedom of the system, for ex-
ample, by restricting its center of mass [1-4]. However, the
change in the free energy resulting from this constraint is not
always carefully accounted for with the notable exception of
the Einstein crystal method [1,2], in which the correction
term is given analytically. In this article, we focus on the
recently introduced thermodynamic integration scheme of
Grochola [4] and develop two simple methods to constrain
the translational degrees of freedom of the system suitable
for this approach.

Among the class of thermodynamic integration tech-
niques, the method proposed in Ref. [4] is unique in that it
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directly calculates the Helmholtz free energy difference be-
tween the solid phase and the liquid phase. This is to be
contrasted with the previous techniques [1-3,5], in which the
absolute free energies of the liquid and the solid phases need
to be computed separately in order to calculate the free en-
ergy difference between the two phases. The other class of
methods that directly calculates the free energy difference
between the solid and the liquid phases is the phase switch
Monte Carlo method [6] which has recently been extended to
Lennard-Jones systems [7]. For an overview of other simu-
lation approaches for calculating the melting temperature, we
refer the reader to Refs. [7,8]. The method presented in
Ref. [4] appears promising. For example, it has recently been
applied to calculate the melting temperature of sodium chlo-
ride [8] and to calculate the surface tension of the Au(100)
surface [9]. For this method, however, a rigorous formulation
has not been proposed to account for the change in free en-
ergy resulting from the constraint on the translational degrees
of freedom of the system. The approach developed by
Frenkel and Ladd [1,2] for this purpose is suitable for the
Einstein crystal method, but becomes prohibitively expen-
sive when applied in Grochola’s method. We address this
problem in the present work.

In many thermodynamic integration methods, the Gibbs
free energy difference AG=Gg—G,; between the solid and
the liquid phases is calculated indirectly, i.e., one first calcu-
lates the Helmholtz free energy difference AF=F¢—F;,
from which AG is obtained by wusing the relation
AG=AF+P(V)s—(V),), where (V)¢ and (V) are the aver-
age volumes of the solid and the liquid phases at given tem-
perature 7, pressure P, and number of particles N. In this
method, AF is calculated by canonical ensemble simulation,
while (V)g and (V), are calculated by separate isothermal-
isobaric simulations. Since the system one can simulate is
not sufficiently large to ensure the equivalence of ensembles,
such a method, in principle, could introduce some degree of
uncertainty. In this work, we present a method of calculating
AG directly by thermodynamic integration.
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The outline of the paper is as follows. In Sec. Il A, we
describe the thermodynamic integration method presented in
Ref. [4] to calculate AF at a given temperature 7 and pres-
sure P. Section II B describes our adaptation of this method
to calculate AG directly. In Sec. I C, we explain the need to
control the translational degrees of freedom along the path
for calculating AG. Two approaches will be presented in
Secs. II D and II E along with the corrections needed to ac-
count for the change in the free energy arising from the con-
straints. We then present results for the AG value and the
melting temperature for truncated and shifted Lennard-Jones
system in Sec. III, and conclude with a brief summary in
Sec. IV.

II. METHODOLOGY
A. Calculation of AF

The method developed by Grochola [4] differs from the
conventional approaches such as the Einstein crystal method
in that the thermodynamic path directly connects liquid and
solid phases at given 7, P, and N in a reversible fashion.
Thus, there is no need to introduce a reference system with
known free energy. However, it still focuses on AF and all of
the states along the path are subjected to constant (T,V,N)
simulation. The system volume V must be determined based
on (V); and (V)g, which in turn are obtained by separate
isothermal-isobaric simulations at the desired values of 7, P,
and N. The integration path is divided into three pieces.

In the first stage of the path, the liquid state is converted
into a high-density fluid state by linearly reducing the
strength of the interaction potential while simultaneously
changing linearly the length of the cubic simulation box from
L:(V}i/ ° to L+B=(V)§/3 so that the length of the simulation
box for the first stage is given by L+\;B. The potential en-
ergy of the states along the path is given by

d1(N)=(1=7\)U, (3)

where 7 is a constant controlling the extent to which the
strength of the interaction potential is reduced. The Helm-
holtz free energy difference for the first stage is given by

1
J
AF[ Zf d}\1<ﬂ>
0 Ny [y,

1
:f d\[- 3B(L+B)\1)2Pu()\1)— 77<U>>\1], (4)
0

where (.. .))\1 indicates the canonical ensemble average taken
for the system with interaction potential ¢;(\;) and P, is the
virial pressure defined by

_kgIN [ 9y
Pv()\l) = V()\l) _< v >)\l» (5)

where kg is Boltzmann’s constant.

In the second stage, the external potential consisting of
Gaussian wells placed at the solid lattice points is gradually
turned on while maintaining the interaction potential and the
system volume constant at ¢,(1)=(1-2)U and (L+B)>, re-
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spectively. This converts the high density fluid state into a
structured low pressure solidlike state. In order for this pro-
cess to be reversible, it is necessary to allow each potential
well to interact with all of the particles within a certain cutoff
distance. In other words, the influence of the potential well
cannot be limited to a particular particle. As we shall see
later, this has an important consequence when controlling the
translational degrees of freedom of the system in simulation.
The total potential energy for the second stage is given by

¢2()\2) = (1 - 77)U + )\ZUext’ (6)

where U,,,=3Y S.aexp(-br?) is the external potential, r;
is the distance between the ith particle and kth well, and the
summation with respect to k is taken over all Gaussian po-
tential wells within a certain cutoff distance of the ith par-
ticle. The cutoff distance reduces the computation required to
calculate the external potential and should be chosen so that
the effect of the Gaussian well on a particle is negligible
beyond this distance. The Helmholtz free energy change for
the second stage is given by

1
AF2=J d)\2<Uext>)\2' (7)
0

In the third stage of the integration, the strength of the
interaction potential is increased to its full strength while
gradually turning off the Gaussian external potential. The
volume of the simulation box is again kept constant in the
third stage. This converts the low-pressure solidlike phase
into the desired solid phase. The total potential energy in the
third stage is thus given by

¢3()\3) = [(1 - 7]) + )\3 77]U+ (1 - )\S)Uext’ (8)

for which the Helmholtz free energy difference is
1
AF‘3 = f d7\’i< 7]U_ Uext))\3- (9)
0

Adding the contribution from each stage, we finally obtain

AF=AF1+AF2+AF3. (10)

B. Direct calculation of AG

The method just outlined is designed to calculate AF, and
each state along the reversible path is subjected to a canoni-
cal ensemble simulation. Instead, we propose to calculate
AG directly by carrying out isothermal-isobaric simulation.
To prevent the high-density fluid from evaporating during the
first and second stages, we impose a constraint on the maxi-
mum possible volume of the system. This maximum volume
V., is chosen to be sufficiently larger than the average vol-
ume of the starting liquid phase and the final solid phase so
that the free energy of either phase will not be affected. Al-
though the constraint is relevant only for the states near the
end of the first stage and the beginning of the second stage,
we maintain the constraint throughout the entire reversible
path in order to avoid unnecessary complication in formulat-
ing the expression for AG. At each stage, we use the same
expressions for ¢; as before and arrive at
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1
AGlzf d\ (- 77U>>\1, (11)
0
1
AG, :f d)\2<Uext>)\2’ (12)
0
and
1
AG3:f d)\3< 77U_ Uext>)\3’ (13)
0

where the thermal averages are calculated in the isothermal-
isobaric ensemble.

C. Constraint on the translational degrees of freedom

Near the end of the third stage, where A5 is close to unity,
the integrand in Eq. (13), denoted hereafter by gs(\3),
changes sharply with N\;. At the same time, the accurate
evaluation of g;(\;) becomes increasingly difficult since the
contribution of U, to ¢; approaches zero in this limit, and
hence the system is free to move as a whole, causing the
value of U,, to change wildly during the simulation [1].
Consequently, the statistical uncertainty in the evaluation of
g3(\3) increases very rapidly as \; approaches unity. This
problem can be circumvented by constraining the transla-
tional degrees of freedom of the system, for which we pro-
pose two distinct methods and obtain the expression for the
correction term to AG due to each constraint.

D. Fixed particle constraint

In the first method, we fix one of the particles in the
system in space. In order that this constraint be consistent
with the isotropic expansion and contraction of the box dur-
ing an isothermal-isobaric simulation, the particle is placed
at the origin of the system. This constraint is imposed
throughout the three-stage reversible path and hence the ther-
modynamic integration gives the free energy difference be-
tween the constrained liquid and the solid states:

AG?=G¥ - G = AG? + AGY + AGY, (14)

where the superscript cp was used to indicate the quantities
obtained in the constrained particle simulation. However,
AG?+# AG and we must evaluate the correction term to es-
timate AG from AG.

For the liquid phase,

. Yy
GLP—GL:_kBTln I (15)
Y,
where
3
Yf:m f av e~ PViksTg(y, — V) f dr, - dryd(r))
Xexp[— U(I‘l, ,I'N)/kBT] (16)
and
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1
Y, = e J av e PVksTo(v, V) J dry---dry

Xexp[— U(ry, ...,ry)/kgT] (17)

are, respectively, the partition functions for the constrained
and unconstrained liquid phases, and A is the thermal wave-
length. The arbitrary length scale [ in Eq. (16) is introduced
to make the equation dimensionally consistent but it does not
affect the final results. @ is the step function defined by
0, x <0,
6(x) = { . (18)

1 otherwise,

and does not allow the system volume V to increase beyond
a certain maximum value V,,. Equation (16) can be rewritten
as

3
AN
Xexp[— U(0,r,, ...

l3
= Ol J dv e PVt o(v, - v) J J dry---dry

Xexp[— U(O ry, ... I’N)/kBT]

l3
= Ol f av e PVksTo(y, V) f f dry- - dry

e kgT], (19)

YP = J av e PVksTo(y, — V) J dry---dry

IN)/kgT]

Xexp[— U(r,ry, ...

where we made use of the fact that U is translationally in-
variant under periodic boundary conditions. From Egs. (15),
(17), and (19), we find

l3
GZP—GL:—](BTIH(<_> ), (20)
ViL

where the ensemble average in Eq. (20) is evaluated by a
liquid phase simulation with no constraint on the position of
the first particle. Similarly,

l3
Ggp—G5=—kBT1n(<‘—/>S). 1)

Thus, the desired free energy difference AG is
AG=Gs— G, =G¥ -G + kBTln< <p>s), (22)

where we used (1/V)=(p)/N. We identify the third term on
the right hand side as the correction term to account for the
fixed particle constraint. Note that the first two terms are of
the order of N, while the third term is independent of N.
Nonetheless, the term can be important if there is a large
difference between (p)g and {(p); or if N is not sufficiently
large.

E. Center of mass constraint

Alternatively, one can control the translational motion of
the system as a whole either by fixing the center of mass r.
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of the system in space [1,2,4] or by confining it to a small
region in space [3]. However, Frenkel’s method of fixing the
center of mass as given in Refs. [1,2] becomes prohibitively
expensive when implemented in our case. In Frenkel’s ap-
proach, which was implemented for Monte Carlo (MC)
simulation, each attempted Monte Carlo move of a particle is
accompanied by a linear translation of N—1 particles in order
to fix r. ,, . However, as explained earlier, each Gaussian well
must act on all of the particles in our technique, and hence
Frenkel’s method would require that the total external poten-
tial on the system be calculated at every attempted particle
displacement during a Monte Carlo simulation. On the other
hand, the approach presented in Ref. [3] remains computa-
tionally efficient to use in conjunction with our method and
hence we use this approach. In particular, we constrain the
center of mass r.,, of the system to a spherical region of a
certain radius R around the origin.

We impose the constraint on r.,, on the states from the
beginning of the second stage till the end of the third stage,
which yields the free energy difference between the con-
strained states

GS™ — G™ = AGS™ + AGS™, (23)

where the subscript F' denotes the state at the beginning of
the second stage, the subscript S denotes, as before, the solid
phase achieved at the end of the third stage, and finally, the
superscript c.m. denotes the constraint on the center of mass.
Note that

YC.HI.
GS™ — Gp=-— kBTln( L ) , (24)
Yp
where
1
yem = N f av e PVksTo(v, — V) f dry -+ dry
X O(R = re.m)expl— ¢,(0)/kpT] (25)
and
Ye= 5 J dv e PVt o(v,, — V) J dry - dry

Xexp[— ¢,(0)/kgT] (26)

are, respectively, the partition functions of the constrained
and the unconstrained F states. From Egs. (24)-(26), we
have

Gp™ = Gp=—kgT In[{A(R - rc.m.)>)\2=0] ) (27)

where the ensemble average is recognized as the probability
p(rem <R) that the center of mass is within the spherical
region of radius R in a simulation carried out without the
constraints on the center of mass. Similarly,

G§™ = Gg=—kgT In[{O(R - rc‘m‘)>)\3=]]' (28)

Using Egs. (23), (27),
AG,=Gp—G,, we obtain

and (28) and noting that
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(6(R - rc.m.)>)\3=l )
(BR = rem),=0)
(29)

AG=AG,+AGS™ + AGS™ + kgT 1n<

where the fourth term on the right hand side is the correction
term to account for the constraint on the center of mass of the
system.

In imposing the constraint on r,, it is important to con-
sider how we define r., . In the Einstein crystal method, if a
particle leaves the box during the simulation, the particle
should not be put back into the original simulation box on
the other side of the box [1] in order to avoid a sudden
change in the external potential. Then, r., is defined based
on the instantaneous coordinates of the particles calculated
under this convention. In the Einstein crystal method, the
reversible path involves the solid phase at one end and the
Einstein crystal at the other end. In the solid phase, particles
typically vibrate about their average lattice positions and
only rarely diffuse away from their initial positions. The
same holds true for the states along the reversible path, since
each particle is bound to the corresponding lattice point by a
harmonic spring. As such, the definition mentioned above is
quite appropriate. In our method, however, the reversible
path involves fluid phase at one end and the solid phase at
the other end. The above argument does not hold for the fluid
phase and r_,, cannot be defined in the above mentioned
fashion. The problem could be alleviated somewhat by im-
posing the constraint on r,,, only for the third stage of the
thermodynamic integration. However, since a Gaussian well
in our approach acts on all of the particles within a certain
cutoff radius, the possibility of a given particle making an
excursion over a long distance cannot be eliminated com-
pletely. For this reason, it is more appropriate, for our ther-
modynamic integration path, to define r.,, based on the in-
stantaneous coordinates of the particles calculated under the
usual convention that whenever a particle moves out of the
simulation box, it is put back into the original simulation box
on the other side of the box. The constraint on r.,, affects
the system differently depending on how one defines r.,,,
and hence the corresponding correction factor also depends
on this definition, as we shall discuss in Sec. III.

III. RESULTS AND DISCUSSION

By means of Monte Carlo simulation, we calculated AG
and the melting temperature of the truncated and shifted
Lennard-Jones potential with the cutoff radius r.,=2.50 us-
ing the method described in the previous section. In what
follows, the quantities with a superscript * are in reduced
units in terms of Lennard-Jones parameters o and €. We used
a cubic simulation box with periodic boundary conditions.
Following Ref. [4], the parameter 7 was set to 0.9. The
Gaussian wells were placed at the fcc lattice points and this
external potential grid was made to expand and contract iso-
tropically along with the simulation box during the volume
change moves. The values for the parameters a and b of the
Gaussian well were taken from Ref. [4] and are given by
a=-8.0€ and h=6.934 88572, These values were optimized
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in Ref. [4] at 7°=0.7 and P"=1.0, and hence we evaluated
AG at this condition. The cutoff distance for the Gaussian
wells was chosen to be 2.50. The value of V,, was deter-
mined so that the probability that V exceeds V,, in an uncon-
strained simulation of the liquid and the solid phase is neg-
ligible. In our simulation at T°=0.7 and P*=1.0, we chose
N/V,,=0.84073, for which this probability is only about
0.001 for the liquid phase. In terms of the effect on the Gibbs
free energy, this amounts to 0.001kz7, which is negligible for
our purpose. For the solid phase, the effect is even smaller.

In the first stage of the reversible path, we started with a
random configuration while in the second and the third
stages, we started with a perfect fcc configuration. For each
of the states along the reversible path, the system was equili-
brated for 50 000 MC cycles followed by a production run of
2X10° cycles with block average taken over every
500 cycles. Each MC cycle consisted on average of two at-
tempted volume change moves and one attempted displace-
ment per particle. The magnitude of all attempted changes
were adjusted during the equilibration period to give ap-
proximately 50% acceptance ratio. The statistical error was
determined based on the block averages [10].

The integrals appearing in the expression for the Gibbs
free energy difference were calculated by performing a trap-
ezoidal rule integration with about 30 integrand evaluations
for each stage. To see the effect of further decreasing the step
size h for each stage, we extrapolated the corresponding AG;
value, regarded as a linear function of h? [11], to the zero
step size limit. This indicated that if we further decrease the
step size for each stage, it would affect the AG value by less
than k37, and hence we did not attempt it.

In the case of the c.m. constraint, the correction term in-
volves the ensemble average of the step function, which is
recognized as the probability p(r.,, <R) that the center of
mass is within the spherical region of a given radius R. As
mentioned in Sec. II E, r.,, can be defined in two different
ways and the corresponding value of p(r, ,, <R) will depend
on the definition. If we follow the definition of r.,, as used
in the Einstein crystal method, the probability density of the
center of mass will be uniform for the solid phase and will be
equal to reciprocal volume of the Wigner-Seitz cell [1]. Thus,
p(rem =R) can be computed analytically in terms of the av-
erage density for the solid phase. However, we used the al-
ternate definition for r.;, as given in Sec. Il E, and the prob-
ability distribution of center of mass, thus defined, cannot be
uniform as it is affected by the boundaries of the simulation
box. For example, the probability density of finding r.,, near
the corner of the box will be much smaller than that of find-
ing r., at the center, since in the former case, the particles
would have to be squeezed in the corner of the box and this
configuration is energetically unfavorable at liquid or solid-
like densities. Therefore, we calculated p(r.,, <R) by a di-
rect simulation for both the fluid phase (\,=0) and the solid
phase (A\;=1). In this work, we sampled p(r., <R) for
2.2 X 10° MC cycles for all values of R, following an equili-
bration period of 50 000 cycles.

We present the AG values with various constraints in Fig.
1. It can be seen from the figure that the predicted AG for
various values of R, with the correction, agree within the
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FIG. 1. Gibbs free energy difference AG=(G/..—G;,) between
the fcc solid and the liquid at P*=1.0, T"=0.7, and N=864. The
value obtained in Ref. [4] under the same condition is AG/kgT
=—1.4. R is the radius of the spherical region to which the center of
mass of the system is confined. The open square symbol indicates
the result for the fixed particle (cp) constraint. Note that the value
of R is irrelevant for this method. For clarity, the error bars for
uncorrected c.m. results are not shown. However, these are roughly
of the same size as the corrected cp result. The horizontal dashed
line is drawn as a guide to the eyes.

statistical uncertainty. The accuracy in evaluating AG for
various constraints depends on two factors: (i) the accuracy
of the integration procedure which mainly depends on the
behavior of the integrand gs;(\3;) near \;=1.0, and (ii) the
accuracy in computing the correction term which depends on
the evaluation of p(r.,, <R). For R/0=0.25, the transla-
tional degrees of freedom are less constrained compared to
smaller R values. As a result, g3(\3) varies more rapidly for
this constraint and hence we evaluated the integrand at a
larger number of quadrature points near A3=1.0. For smaller
values of R, integrand is better behaved. However, an accu-
rate computation of the correction term by a direct simula-
tion requires a larger number of sampling since p(r, , <R) is
small. This indicates that in the c.m. constraint method, some
intermediate value of R, e.g., R/0=0.05 and 0.1 in our case,
would be optimum in terms of computational time and accu-
racy. We also note that our uncorrected c.m. results for
smaller R values are closer to the AG value obtained in Ref.
[4]. This is expected since the latter value was obtained with
the center of mass fixed throughout the reversible path and
was not corrected for this constraint. There is still a notice-
able discrepancy, however, between our uncorrected results
and that in Ref. [4] (AG/kzT=-1.4). This can be attributed
to the fact that we used more than twice the number of inte-
grand evaluations (cf. Figs. 4—6 of Ref. [4]) for each stage of
the integration to calculate AG.

The results from the fixed particle constraint method are
also shown in Fig. 1. In this case, the correction term in-
volves bulk densities of the solid and the liquid phases, and
hence its evaluation is relatively easy. However, as in the
case of the c.m. constraint with R/0=0.25, the calculation of
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FIG. 2. Gibbs free energy difference AG as a function of 7" at
P"=1.0 and N=864 for the fixed particle constraint. Note that the
scale along the temperature axis is highly expanded. For clarity, the
error bars are shown only for three points. For the rest of the points,
the error bars are nearly of the same size.

AG required a larger number of g;(\3) evaluations than in
the case of c.m. constraint with R/o=<0.1. However, the
fixed particle constraint is more effective in making g;(\3)
smooth than the c.m. constraint with R/o=0.25. We see from
Fig. 1 that the AG value from the fixed particle constraint
method agrees with the AG values from the c.m. constraint
method within the statistical uncertainty.

To determine the melting temperature, we obtained the
value of AG as a function of T by integrating the relation

. T2< AAG/kyT)
B

oT )P,Nz(<U>L+P<V>L)_(<U>S+P<V>S)

(30)

with respect to 7 while holding P and N constant and using
the value of AG at T"=0.7 as the initial condition. The melt-
ing temperature T, is then found by solving AG(T,;)=0. The
ensemble averages on the right hand side of Eq. (30) were
evaluated by isothermal-isobaric simulations for each phase.
The resulting plot for AG is shown in Fig. 2 for the fixed
particle constraint. For the other constraints, the plot looks
quite similar. The melting temperatures for various con-
straints obtained from these plots are listed in Table I. It can
be seen from the table that the melting temperature predicted
by the fixed particle constraint method agrees with those
obtained by the c.m. constraint method for all values of R.
Thus, the two methods we presented for treating the transla-
tional free energy are sufficiently accurate. It will also be
observed that the effect of the correction term on the melting
temperature is quite small under the conditions we studied.
This is because the slope of the plot in Fig. 2 is large ~1800.
Since the magnitude of the slope is directly proportional to

PHYSICAL REVIEW E 73, 016704 (2006)

TABLE I. Effect of the correction term on melting temperatures
for various constraints at P*=1.0. The value of AG/kgT=-1.4, as
reported in Ref. [4], yields T),=0.701.

Constraint T;[ without correction T;I with correction
c.m. (R/0=0.01) 0.7068+0.0015 0.7100+0.0022
c.m. (R/0=0.05) 0.7065+0.0015 0.7091+0.0020
c.m. (R/0=0.10) 0.7078+0.0015 0.7098+£0.0020
c.m. (R/0=0.25) 0.7102+0.0017 0.7106+0.0019
Fixed particle (cp) 0.7098+0.0016 0.7098+0.0016

the enthalpy of fusion of the system [see Eq. (30)], T, will
be more sensitive to the correction term as well as to the
statistical uncertainty, when the enthalpy of fusion is small,
in which case the accurate evaluation of the correction term
as presented here becomes important. The correction term
can also be significant if there is a large difference between
the solid phase density and the liquid phase density or if the
system size is small [see Eq. (22)].

The calculation of the correction term in the c.m. con-
straint method is more time consuming computationally than
that in the fixed particle constraint. This is because, on the
one hand, a small value of R is required to ensure sufficient
accuracy in evaluating gs(\3), which on the other hand im-
plies that p(r.,, <R) is small, requiring a large number of
configurations to be generated for its accurate estimation.
Overall, we found the fixed particle constraint method to be
more efficient computationally even though gs(\;) is less
well behaved as A3 approaches unity and hence more inte-
grand evaluations are needed than the c.m. constraint method
with smaller R values.

IV. SUMMARY

In this article, we presented two methods for treating con-
sistently the translational free energy of the system while
calculating directly the Gibbs free energy difference AG be-
tween the solid and the liquid phases at a given temperature
and pressure. In particular, we have shown that both fixed
particle constraint method and the center of mass constraint
method are effective in controlling the translational degrees
of freedom of the system and hence in reducing the statistical
error in evaluating the integrand, while at the same time
rendering the integrand itself well behaved. Thus, one of the
major difficulties in evaluating melting point of a crystal can
be circumvented by our methods. Finally, we note that our
method extends naturally to binary systems [12].
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